

o.Prof. Dr.mont. H.J. STEINER
Ergänzender Bericht über aufbereitungstechnische Untersuchungen von Roherzproben
aus der Kupferlagerstätte
WALCHEN bei Öblarn

1977-010

Prof. Dr. H. J. STEINER
Vorstand des Institutes für Aufbereitung
und Veredlung
Montanistische Hochschule
8700 Leoben (Osterreich)

KUPFERERZ WALCHEN 77-2

Leoben, 15.12.1977

Ergänzender Bericht über aufbereitungstechnische Untersuchungen von Roherzproben aus der Kupferlagerstätte
WALCHEN bei Öblarn

Ergänzender Bericht über aufbereitungstechnische Untersuchungen von Roherzproben aus der Kupferlagerstätte WALCHEN bei Öblarn

1. Motivation und Zielsetzung

Über aufbereitungstechnische Untersuchungen an Roherzproben aus der Kupferlagerstätte WALCHEN bei Öblarn im Rahmen der Arbeitsgemeinschaft "Steirische Rohstoffreserven" (Federführender: o.Prof. Dr.phil. F. WEBER) wurde vom Verfasser mit Datum vom 31.3.1977 ein Bericht abgegeben, der in gekürzter Fassung in den Mitteilungen der Abteilung für Geologie, Paläontologie und Bergbau des Landesmuseums Joanneum 1977 veröffentlicht wurde.

In diesem Bericht wurde die Erzeugung eines Kupfer/Blei-Mischkonzentrates mit ca. 20 % Cu, 12 % Pb und einem Silbergehalt von 450 g/t bei einem zugeordneten Kupfer-Ausbringen von ≥80 % als technisch möglich bezeichnet.

Im damaligen Bericht wurde auch die enge Verwachsung der Roherzkomponenten als das Haupthindernis genannt, welches der Erreichung eines noch höheren Anreicherungsgrades bei gleichzeitig befriedigendem Metallausbringen entgegensteht. In Anbetracht des großen Einflusses des erreichbaren Anreicherungsgrades auf die Konzentratbewertung und damit auf den anlegbaren Preis des Roherzes erschien es nun noch wünschenswert, mit einer weiteren Untersuchungsreihe die sogenannte "Anreicherungsgrenze" abzutasten und zugleich den ausgeprägten Zusammenhang zwischen erreichbarer Anreicherung und erreichbarem Ausbringen aufzuzeigen. Die Randbedingungen der im vorliegenden Bericht beschriebenen Flotationsversuchsserie waren daher einseitig auf die Erzielung einer höchstmöglichen Anreicherung ausgerichtet.

Außerdem erschien es in Anbetracht der engen Verwachsung und der damit verbundenen Forderungen nach einem weitgehenden Aufschluß auch noch wünschenswert, zusätzliche Informationen über die Bruchcharakteristik und den Zerkleinerungswiderstand des Roherzes zu gewinnen. Zu diesem Zweck wurden Zerkleinerungsversuche durchgeführt, wobei die Ermittlung der Dispersitätsgrade der Zerkleinerungsprodukte auch Messungen ihrer spezifischen Oberfläche einschloß.

2. Zusammenfassung der für die Praxis relevanten Untersuchungsergebnisse

Eine Nutzung des Kupferinhaltes der Lagerstätte ist nicht unbedingt an die Erzeugung eines Cu/Pb-Mischkonzentrates gebunden, sondern grundsätzlich auch im Wege der Erzeugung eines selektiven Kupferkonzentrates mit einem Cu-Gehalt > 25 % möglich. Auf Grund der engen Verwachsung ist dieser Weg jedoch mit hohen Ausbringensverlusten verbunden.

Für die Schwierigkeit der Verwachsungsverhältnisse ist kennzeichnend, daß nur der Kupferinhalt der Kornfraktion < 40 µm für die Erzeugung eines hochselektiven Kupferkonzentrates geeignet ist.

Außerdem wird bei der Erzeugung eines hochselektiven Kupferkonzentrates auch der Silberinhalt des Roherzes ungenügend ausgebracht, da dieser jedenfalls aufbereitungstechnisch zu einem hohen Prozentsatz an den Bleiglanz gebunden ist.

Strafabzüge für Arsen im Metallkonzentrat sind nicht zu erwarten bzw. werden nicht ins Gewicht fallen. Dagegen werden sich die Strafabzüge für Antimon in dem im Bericht vom 31.3.1977 angegebenen Rahmen bewegen.

Die bei den Zerkleinerungsversuchen gewonnenen Daten über den Zusammenhang zwischen spezifischen Energieverbrauch und neugeschaffener spezifischer Oberfläche können zusammen mit dem gewonnenen neuen Einblick in die Bruchcharakteristik des Roherzes als eine ausreichende Grundlage für die technische Konzeption eines Zerkleinerungssystems angesehen werden.

- 3. <u>Untersuchungen zur Frage der Bruchcharakteristik und des Zerkleinerungswiderstandes</u>
- 3.1. Zerkleinerungsversuche mit der Roherzprobe Nr. 2201

Eine durch Absiebung bei 0.63 mm von den Feingutanteilen < 0.63 mm befreite Teilprobe der bereits im Bericht vom 31.3.1977 erwähnten vorzerkleinerten Roherzprobe 2201 wurde nach der Methode der Zyklenmahlung (Simulation einer Kreislaufmahlung) zu 100 Masse % unter die Prüfsiebgröße 0.63 mm zerkleinert. Das Zerkleinerungsprodukt der Zyklenmahlung erhielt daher die Bezeichnung "Zerkleinerungsprodukt < 0.63 mm".

Die Siebanalyse des bei 0.63 mm vorabgesiebten Aufgabegutes der Zyklenmahlung lautete: 51 Masse % Siebdurchgang bei 2.5 mm, 15.4 Masse % Siebdurchgang bei 1.2 mm, 0 Masse % Siebdurchgang bei 0.63 mm. Die obere Grenzkorngröße des Aufgabegutes lag im Bereich von 5 mm. Graphische Darstellung der Siebanalyse siehe Abb. 1.

Die Mahlung erfolgte in 6 Zyklen mit der Stabmühle 150 Ø x 300 mm bei einer Drehzahl der Mühle von 66.6 UpM und einer Mahlkörper-charge von 8 Stäben mit einem Gesamtgewicht von 8.465 kg. Über die Nettoleistungsaufnahme der Mühle liegt ein Erfahrungs-wert vor: ca. 28 Watt.

Bei der Zyklenmahlung wurde eine umlaufende Last (= Massenverhältnis von Rückgut nach der Absiebung bei 0.63 mm zu Frischaufgabe) von 100 % angestrebt und in den GleichgewichtsZyklen Nr. 4, 5 und 6 auch erreicht. Die Feingutneubildung <630 µm war im Gleichmahlstadium (Zyklen Nr. 5 und 6)
2.93 g/sec. Die Siebanalyse des Feingutes<0.63 mm der
Zyklen Nr. 4, 5 und 6 ist in Zahlentafel 1 bzw. Abb. 1
festgehalten. Die graphische Darstellung der Siebanalyse
des Zerkleinerungsproduktes <0.63 µm ergibt im GGS-Netz
eine Ausgleichsgerade mit einem GGS-Exponenten von n = 0.70.

Die Feststoffdichte des Zerkleinerungsproduktes <0.63 mm wurde mit dem BECKMAN-Luftpyknometer zu γ = 3.71 g/cm³ ermittelt. Die Packungskennwerte des Zerkleinerungsproduktes bzw. einzelner Siebfraktionen des Zerkleinerungsproduktes sind aus Zahlentafel 2 ersichtlich.

Die spezifischen Oberflächen der Siebfraktionen 100/40 µm und 40/0 µm aus dem Zerkleinerungsprodukt <0.63 mm wurden mit dem PERMARAN-Gerät gemessen. Die Mittelwerte aus 3 x 3 Messungen (100/40 µm) bzw. 6 x 3 Messungen (40/0 µm) sind in Zahlentafel 3 festgehalten.

Aus den vorhandenen Angaben kann jederzeit die Rittinger-Konstante (cm²/Wsec) der Eingangsprobe Nr. 2201 errechnet werden.

3.2. Zerkleinerungsversuche mit der Probe Nr. 2020

3.2.1. Zerkleinerung auf < 1 mm

Das Zerkleinerungsschema zusammen mit den näheren Einstelldaten bzw. Ergebnissen ist in Abb. 2 dargestellt. Die Feststoffdichte des Zerkleinerungsproduktes < 1 mm war 3.97 g/cm³ (Ermittlung mit dem BECKMAN-Luftpyknometer). Die Packungskennwerte des Zerkleinerungsproduktes < 1 mm sind aus Zahlentafel 2 ersichtlich.

Die Siebanalyse des Zerkleinerungsproduktes <1 mm bzw. die Siebanalysen der sonstigen im Rahmen der Zerkleinerung der Eingangsprobe Nr. 2020 angefallenen Produkte sind in Zahlentafel 4 festgehalten. Die graphische Darstellung der Siebanalysen ist in Abb. 3 zu finden. Aus dieser Abbildung kann auch abgelesen werden, daß der GGS-Exponent des Zerkleinerungsproduktes <1 mm den Wert n = 0.70 hat.

Die Zahlentafel 3 enthält die Ergebnisse der Messungen der spezifischen Oberfläche von zwei Siebfraktionen des Zerkleinerungsproduktes <1 mm einschließlich der zuge- ordneten Prozentsätze des Siebdurchganges. Unter Berücksichtigung des vorhin erwähnten GGS-Exponenten n = 0.70 konnten daraus rohstofftypische Kenngrößen wie der Formfaktor f und die untere Grenzkorngröße k₀ errechnet werden. Die Kenngrößen sind ebenfalls in Zahlentafel 3 angeführt.

Anmerkung zur Vorabsiebung der vorzerkleinerten Eingangsprobe:

Vor der Durchführung der Zerkleinerung der Eingangsprobe Nr. 2020 auf < 1 mm wurde - ebenso wie bei der Zerkleinerung der Roherzprobe Nr. 2201 auf < 0.63 mm - der jeweilige Feingutanteil abgesiebt und verworfen. Mit dieser Vorgangsweise sollte verhindert werden, daß die Ergebnisse der Zerkleinerungsversuche durch die Oxydation des Roherzes verfälscht werden. Die hohe Oxydationsneigung des Roherzes wurde bereits im Bericht vom 31.3.1977 festgestellt.

3.2.2. <u>Mahlung des Zerkleinerungsproduktes < 1 mm auf</u> Flotationsfeinheit

Zur Durchführung des Flotationsversuches wurde eine Teilprobe des Zerkleinerungsproduktes < 1 mm auf 80 Masse%
< 80 µm gemahlen. Die Mahlung wurde als chargenweise
Naßmahlung bei einem Feststoffgehalt der Mahltrübe von
75 Masse% in der Stabmühle 150 Ø x 300 mm bei einer Mahlkörpercharge von 8 Stäben mit einem Gesamtgewicht von

8.465 kg durchgeführt. Die Drehzahl der Mühle betrug 66.6 UpM. Die Nettoleistungsaufnahme lag gemäß Erfahrungs-werten bei ca. 28 Watt.

Die spezifische Mahldauer wurde zu 26.5 min/kg gewählt. Unter Berücksichtigung des oben genannten Erfahrungswertes über die Nettoleistungsaufnahme der Mühle entspricht dies einem spezifischen Nettoenergieverbrauch von ca. 12.4 kWh/t.

Die Siebkennlinien des Vorlaufes der Mahlung und des Mahlproduktes sind in der Zahlentafel 4 bzw. in Abbildung 3
festgehalten. Demgemäß hatte der Vorlauf der Mahlung einen
Korngrößenkennwert k₈₀ von 750 µm, das Mahlprodukt einen
k₈₀-Wert von 83 µm. Aus diesen Dispersitätskenngrößen
sowie dem oben genannten Wert des spezifischen Energieverbrauchs errechnet sich als Kennzeichnung des Zerkleinerungswiderstandes ein Work-Index nach BOND von
ca. 16.4 kWh/t.

Im Zusammenhang mit diesem Versuchsabschnitt ist noch zu erwähnen, daß die Mahlung des Flotationsvorlaufes unmittelbar vor der Durchführung des Flotationsversuches erfolgte, und daß bereits bei der Mahlung CaO in einer Menge von 3.0 kg/t zugegeben wurde.

4. Flotationsversuch

4.1. Bedingungen

Der Flotationsversuch wurde mit einem Mahlprodukt der Eingangsprobe Nr. 2020 durchgeführt. Die Mahlung des Flotationsvorlaufes wurde im vorangegangenen Abschnitt beschrieben. Das Schema des Flotationsversuches ist aus Abb. 4 ersichtlich. Der Flotationsversuch gliederte sich in 8 Abschnitte, d.h. 2 Rougherstufen, 3 Scavengerstufen, 3 Cleanerstufen und eine 2-stufige Zwischenproduktflotation. Durch die Entnahme von Teilproben aus den Schaumprodukten der Rougher- und Scavengerstufen sowie den Rückstands- produkten der 3 Cleanerstufen war es auch möglich, einen Einblick in den zeitlichen Ablauf des Flotationsgeschehens zu gewinnen.

Flotiert wurde mit dem DENVER-Laborflotationsapparat.
Für die Rougher- und Scavengerstufen wurde die Zelle mit dem Nennvolumen 2950 ml, für die Cleaner- und Zwischenproduktstufen die Zelle mit dem Nennvolumen 1580 ml verwendet. Weitere Daten über die verwendeten Zellen sind aus Zahlentafel 5 ersichtlich. Die Drehzahl des Rührwerkes war 1000 UpM bei der Konditionierung und 1400 UpM beim Ausschäumen. Die Flotationszeiten und die Kennwerte der Belüftung in den einzelnen Flotationsstufen sind in den Zahlentafeln 6 und 7 zusammengestellt.

Die Ergebnisse der Teilprobenentnahme aus weiterverarbeiteten Produktströmen sind in Zahlentafel 8 zusammengestellt.

Flotationsmilieu: Als pH-Regler wurde CaO verwendet.
Bereits bei der Mahlung wurde eine Menge von 3 kg/t
zugegeben. Die Verbrauchszahlen in den einzelnen Flotationsstufen und die daraus resultierenden pH-Werte sind aus den
Zahlentafeln 9, 10, 11, 12 ersichtlich. In den beiden letztgenannten Zahlentafeln sind auch die Verbrauchszahlen für
den Sammler (Kalium-Amyl-Xanthat) und die Schäumerreagenzien
zu finden.

Um eine möglichst hohe Selektivität gegenüber dem im Roherz mengenmäßig vorherrschenden Pyrit sicherzustellen, wurde das als Sammler verwendete Kalium-Amyl-Xanthat kurz vor dem Flotationsversuch durch Waschen mit Diäthyläther, Auflösen in Aceton, Filtrieren über eine Glasfritte und Ausfällen mit Diäthyläther aus der Acetonlösung von Dixanthogen und anderen selektivitätsmindernden Zersetzungsprodukten befreit.

4.2. Auswertung

Die zur Erstellung einer ausgeglichenen Massenbilanz notwendigen Berechnungen sind aus dem Anhang ersichtlich. Die
notwendigen chemischen Analysen wurden freundlicherweise
vom Institut für Allgemeine und Analytische Chemie der
Montanuniversität Leoben (Vorstand: o.Prof. Dr.techn. H. ZITTER)
durchgeführt. Die Ergebnisse der direkten chemischen Analysen
sind aus dem Anhang ersichtlich, wobei die Zuordnung der
Produkte aus den Angaben in den Zahlentafeln 13 und 14
hervorgeht. Aus den beiden letztgenannten Zahlentafeln sind
auch die Feststoffgehalte der Flotationsprodukte ersichtlich.

Zahlentafel 17 faßt die Ergebnisse des Ausgleichs der Massen- und Metallbilanz zusammen. Zahlentafel 18 enthält die Angaben für den in Abb. 5 dargestellten Flotations- ablauf in den Rougher- und Scavengerstufen.

Soweit ausreichende Probemengen anfielen, wurden die Produkte in Siebfraktionen zerlegt. Von den angefallenen Siebfraktionen wurden durch Einbetten in Kunstharz Körneranschliffe hergestellt, deren Zuordnung aus Zahlentafel 19 ersichtlich ist.

In den Zahlentafeln 20 und 21 bzw. 22 ist die Auswertung der Siebfraktionsanalysen des Flotationsvorlaufes, des Rückstandes der Scavengerstufe Nr. 3 und des Rückstandes der Zwischenprodukt-Rougherstufe zu finden. Aufbauend auf den Ergebnissen der Berechnung der letztgenannten Zahlentafeln wurden auch die Korngrößen-Häufigkeitsspektren

der Metall- bzw. Mineralinhalte ermittelt. Siehe Zahlentafeln 24 bis 27 und Abb. 6 bis 11.

Zahlentafel 23 bringt eine Zusammenstellung der aus den Analysenergebnissen berechneten Mineralgehalte in der Aufgabe und den Endprodukten des Flotationsversuches.

Dem vorliegenden Bericht sind auch Mikrofotos von Körneranschliffen beigefügt. Die zugeordneten Aufbereitungs-produkte stammen aus den im Bericht vom 31.3.1977 beschriebenen Versuchsreihen (Zuordnung siehe dort in den Zahlentafeln 27-30).

Siebgröße	Mass	e %
[jum]	. F%	0%
630	0.00	100.00
500	14.93	85.07
400	16.99	68.08
300	7.21	60.87
200	16.96	43.91
160	4 34	39.57
125	6.02	53.55
90	7.64	25,91
63	6.11	19.80
40	5.42	14.38
32	2.72	11.66
0	11.66	0.00

Probe Nr. 2201:
Siebanalyse des Feingutes der Zyklen
Nr. 4 und 5 der Zyklenmahlung auf eine
Prüfsiebgröße von 0.63 mm
Die graphische Auswertung der obigen
Zahlentafel im GGS-Netz ergibt eine GGSAusgleichsgerade mit dem GGS-Exponent n=0.70

Eingangs-	Korn-	Verdi	chtungs;	zustand	,
Eingangs- probe	fraktion	lose gesc	hüttet	gerütte	elt
Nr	[mm]	Schülldidte [9/cm³]	Festsloff- auteil Vol%	Schüttdichte [g/cm³]	Feststoff- auteil Vols
	630/0	1.92	52	2.32	63
2201	4010	1.30	35	1,70	46
	630/100	1.78	48	2.07	56
	100/40	1.48	40	1.82	49
2220	1000/0	1.99	50	2.50	63

Feststoffclichte: (Ermittlung mitdem Luftpyknometer):

Probe Nr 2201: Zerkleinerungsprodukt < 0,63mm

y= 3,71[9/cm3]

Probe Nr 2220: Zerkleinenungsprodukt < 1.0 mm y= 3,97 [g/cm3]

1) Packungskennwerte verschiedener Zerkleinerungs	
1) Packungskennwerte verschiedener-Zerkleinerungs brodukte bzw. von Siebfraktionen verschie-	
dener Zerkleinerungsprodukte	

2) Feststoffdichten von Zerkleinerungsprodukten

Pr	odukt	Siab-	Sieb-	7	Spezifische	GGS-	Kenr	ngröße	7
Eingangs probe Nr.	Verfahrenstechnische Produktbezeichnung		durch- gang D%	Dichtz [g/cm³]	11 Y 10 Y Y 1000 00 00	Exponent (abgelesen)	Form- faktor f	Grenzkorn- größe Ko [um]	GG5- Exponent m
	Zerkleinerungs-	100	19						
2020	produkt < 1mm	40	10	3.97	1203	0.70	7.37	5.24	0.70
		0	0	3.97	6953				
	Vorlauf	40	100				7 27(X)	2.30	0.70 ^(xx)
	Flotation	0	0	3.97	11 090		7.27.	2.50	0.10
	Zerkleinerungs-	100	27.5						
2201	produkt < 0,63 mm	40	14.4	3.71.	1773	0.70	11.4	7.52	0.70
· · · · · · · · · · · · · · · · · · ·		0	0	3.71	8785		e e e e e e e e e e e e e e e e e e e		

Anmerkung: x übernommener Wert

xx Grenzwert des Körnungsbereich k - \$ (Siehe Abbildung

Dispersitätskennzeichnungen von Siebfraktionen verschiedener Zerkleinerungsprodukte. Aus den Zahlenwerten der rechten Seite Wurden die auf linken Seite der Tabelle ungeführten rohstofftypischen Kenngrößen errechnet.

Sieb- größe		nerungs- t < 6mm	Zerkleine produkt	rungs- < 1mm	Rücko Zyklenn	jut nahlung	Vorlau Flotatio	į.
[um]	F%	D%	F%	0%	F%	D%		
6000	0.00	100.00		and Microsoft Comments and control of the control o				
5 000	12.39	87.61						
4000	11.63	75.98						
3000	19.15	56.83	•		3.63	96.57		
2000	14.33	42.50			14.19	82.18		
1500	5,48	3 7.32			11.92	70.26		
1200					29,92	40.34		
1000	10.51	26.81	0.00	100.00	40.34	0.00		
750	3.88	22.93	21.89	78.11		William Hand		
600	2.73	20.20						
500			20.50	57.61				
400	3.98	16.22						
300	•	,	15.88	41.73				
200	4.52	11.70	11.40	30.33				
160							0.51	99.49
120			6.92	23.41				
100			4.25	19,16			9.17	90.32
75			4.04	15.12	The market of the country country and property and see on		15.62	74.70
63			2.49	12.63		To the second se		
60							13.54	61.16
40			3.11	9.52			9.01	52.15
0	11.70	0.00	9.52	0.00	0.00		52.15	0.00

rungsprodukte der Eingangsprobe tahlentatel 2220 4
--

Beschreibung des DENVER -Laborflotationsapparates

1) <u>Rührwerk</u> Rührwerksgeometrie

Durchmesser des Rotors, mm: 68 Außendurchmesser des Rotors, mm: 96 Außendurchmesser des Standrohres, mm: 43.2 Aüßerer Querschnitt des Standrohres, cm²: 14,66

2) Flotationsbehälter ("Zellen")

Zelle Nr	1	2	3	Abkur- Zung
Gewichtderleeren Zelle [9]	2850	3 930	6620	
Nennvolumen - Volumen bis zur Überlaufkaute [m]	1850	2950	5180	NV
Nenntiefe = Differenz Überlaufkante -Behälter- boden [cm]	11.6	14.0	18.0	NT
Nennoberfläche = Cherfläche (freier Quer - schnitt innerhalb des Behälters) in Höhe der Überlaufkante [cm²]	153.66	234.66	324.66	NA
Fassungsvermögen der Zelle bis zur Über- laufkante bei eingetauchtem Rührwerk aber ohne Belüffung ≤ Effektivvolumen bis zur Überlaufkante ohne Belüffung [ml]	1420	2780	5 000	EV
Freie Oberfläche (freier Zelleuguerschnitt) in Höhe der überlaufkante bei einge - tauchtem Rührwerk = Effektive Ober- fläche der Zelle [cm²]	139	220	310	EA
Volumen des Rührwerks bei Klarwasserfüllung bis zur Überlaufkante [ml]	160	170	180	
Luftblasen volumen in der Flüssigkeit bei Belüftung (1450 UpM, ungedrosselt) und Klarwasserfüllung bis zur Überlaufkante [ml]	250	330	370	
Zulässiges Trübevolumen ohne Belüffung, ml = Effektivvolumen bis zur Überlaufkante ohne Belüffung, minus Luftblasenvolumen migus Nominelles Schaumvolumen(=Effektivberflächex nominelle Schaumhöhe hincm); für h= 1cm	1121	2390	4 510	

Trübevolumen = Effektivvolumen bis zur Überlaufkante minus nominelles Schaumvolumen.

Weitere Kenngrößen:

Aquivalente Zellentiefe = Effektives Zellenvolumen bis zur Liberlaufkante Effektive Zellenoberfläche

Äquivalente Trübehöhe - Trübevolumen

Effektive Zellenoberfläche

Fortsetzung der Zahleutafel 5a

	Zai	t [min]			1	3014						Abgelei apparat	tete ive
t .	бип	Flotat	ion	Luft-	1	H verbra			Hungsin	tensita		Date	'n
clotations- stute	Konditionierung	in der	Teil- Summe	strom	absolut (in der Stute)	Spezifisc ellektive oberfle	Zellen-	oberfläden	Volums-	Vol% Lift in der belüfteten	Flucht- geschwin-	ellehves Zellenvolu- men bis Zur über-	Zellen oberfläche
<u> </u>	Konc	01916	Somme	[2,]	[[]	in der Stufe	Teil- summe	bezogen [cm³/cm² min	(siche Aum.) [cm³/cm³.min]	Trübe	digkeit [cm/sec]	laufkante [m/]	[cm ²]
R1	2	1.0			5.3	24.09	24.09	manufacture (Manufacture (Manuf					
R2		4.0			11.0	50.00	74.09				·		
51		4.5			20.0	90.91	165.00						
52		7.2			35.0	159.09	324.09						
53		9.6			79.0	359.09	683-18						

Anmerkung: Bezugsgröße ist das Volumen der umbelüfteten Trübe in der Aufangs-Mittel-Endphase des Ausschäumvorganges.

	Zei	t Emin]		B	elüft	449	<u> </u>		-		Abgelei	tete
tufa	S Z S	Flota		Luft-	Luftve	crbrau	ch	Belli	Hungsi	nteusia	ät	Abgelei appare Date	ative en
Flotationsstufe	Konditionierung	in der Stufe	Teil- Summe	Lutt- Strom [[/miu]	absolut (in der Stufe)	spezifisc effektiv oberflä in der Stufe	h [cu³/cu²] e zellen che Teil- summe	Spezifis Luftstr oberfläden bezogen Em³/cu²miy	cher om volums - bezogen siehe Aun cudleusmin		Hudt.	effektives Zelleuvolu- men bis Zurüber Iaufkante [ml]	ober -
CA		6.95			20.0								
C2		5.50			15.0					· ·			
C3		5,25			15.0								
ZR	2.0	6.40 8.20			20.0 10.0								
2C		5.45			15.0					·			·
Anma	rkung	Trub	ie in a	Beist Ier Au Ivorgav	tangs	lumen - Mitte	der un 1 - Eud	nbelüfte Iphase	den des	Zahl	entafe	7	

Nr.	Prod	duktbezeichnung.	1							eutnah		1	Massenbi Versuchsa Ohne Teilpi entne	roben-
sstite	07		Teilpi Verju	robei ugur	neutna Igs v ert	hme Villub	Durch di ermitlelte	rekte Wäg Festsloffd [9]	jung jewidte	Erreduet produkt ge	e Festsloff- wichte[g]	Fest stoff genalt	stufæn- bezogene	Gesaut-
Verfahrensstite u. Benennung	46kürzung	Benennung	Trul (Ni	•	Fesisi (NF		nach Vers Schluß V Produ	orliegende	verarbeite-	Produkt- gewicht nach den	gewicht	12	Bilanz	bilanz
Very	AP		auge- strabt	er- reidul	ange- strebt	er- reidu	Teilproben	End- produkte	TE HOUGH	Beprobung	Beprobung	Masse%	Masse%	Masse %
RI	SR1	6chaum Rougher1		184			0.70				12.86	243		
R2	SR2	Schaum Rougher 2		17.9			2.70				48.28	24.2	- Walking of Markey (Markey Markey (Markey Markey (Markey Markey (Markey Markey (Markey Markey (Markey (Markey Markey (Markey	y transplantation and the Magnes are Name to
51	961	Schaum Scavenger1		18.5			1.25				23.13	17.5		
52	562	5 draum Scavenger 2		A.8			1.86				33.13	14.3	The second section of the second sections of	
53	583	Schaum Scavenger 3		保干			1.61				28.56	10.1		
CI	RCI	Rüchst. Cleaner 1		18.5			1.93				35.71	20.1		
C2	RC2	Rückstand Cleaner 2		18.2			0.41				7.46	5.55		
C3	RC3	Rückstand Cleaner 3		18.6			0.20				3.72	1.35	·	

Anmerkung: Produktbezeichnung der

Teilproben:

T (Produkt bezeichnung)

_			4	10191	Flotations milieu	milie	77.		-			
20 Sno.	4	F 0			Redoxpo	Redoxpotential () /	(Leitfäh) Leitfähigkeit (Trübe-
40) 40)	Einregulierung	Hierung	Flotation	Lion	17 . {	nach	nach nach	am Endader	ŭ	nach	am tempe-	tempe-
1017 12	21. Beginn nachtugabe nachtugabe (Aufangsreg) regulators Reagertien	nachtugak nachtugabe des pH Haupaller auderen regulators Reageutien	tr Beginn	am Ende	Ведінн	Reagenz. einwirkgI	Reagent. einwirkungli einwirkgliftet beginn)	Flotation	Rgiun	kungabe tugabe	Ende der Flotation	$[\mathcal{I}_{\sigma}]$
RA	\$ 50 50 4		14.2									
R2												
51				9.63								
52				9.25								
S S S				90.6								
Anm	Anmerkung 1:	bei der Mahlung bereits Zugegeben	Jahlun	g bene	its cao		3kg/t	-] M	Zahlentafel 9	tafel	6

.

PH Definite gulier and graph of the subsection				了) こここうないことが	ر 2					-	
				Redo	Redoxpotential	tial ((Leitfäh) Leitfähigkeit (Tribe-
		Hotation	J.O.Z	7,	nach	nach mach	a	な	nach au	2 K	temperat.
	thanach tugder = aller auderen Bi	Beginn	am Ende	, Z	Kagent. eiuwikgI	einwirkg II (Flot beginn)	qer Flotation	Ведіин	Keageut tugabe	Flotation [°C]	[]
9 10											
			Ö								
ZR 8.4 11.4		10.81	2.9								
2C 8.85 11.2		F.OF	8.65								
								7a1	Zahlentafel 10	Hel -	0

.

-51		Ragganzienregime	nzienr	eg im	8			
70.H	Regulatoren uno	und Regulatorfunktion	nktion	(4 · 10 9	
hle -plc	Py-Hauptregulation		-) C	Sammler		0 C2 0	OCAGI RET
11	Bezeich Verbrauch Bezeich, Verbrauch Bezeich Kerbrauch Bezeich, Verbrauch Bezeich. Vereinzuch Bezeich. Vereinuch	th Verbrauch Bezei	th. Verbreitech.	Bezeich,	Perbrand Bezeich	Vertrad	Bezaidi	lerbrauch
RA	2,59 + CaO + Ph 12.1			Kalium amyl- xanthat	bш59		Dineol Frother	12 Tr.
	Anm. 1			(KAX)			65	17.16
R2				KAX	28 mg			
51				KAX	19mg			
52				XXX	19mg			
7				7 / /				
0				×	16mg			
Samme Arinit	Cat - Stammlösung: 100 g/l Anmorkung 1: Die Trübefärbl sich grünlich, nach zum Belüffung py 12.06 Versuch aberohen; durch Dekandieren vou Klarwasser 4 zugabe vou Trischwasser py-den schließ auf 14.2 eingestellt.	10 Sung: 100 g/1 Die Trübefärd sich grünlich, nach zwin Belüffung ph. 120 Versuch alegebrochen; durch Dekandieren vou Klarwasser u zugabe voutrischwasser ph-wert schließ auf 14.2 eingestellt AX gereinigt!	a, nach zwe du Dékandie 24-dert sadk	in Belüff ren vou Bauf M		Zahlentafel 111	afel A	7

		1mar	Verbrauch Beseichng Verbrauch				1/4 Tr.		1 Pares
	* 1	Schaumar	Bezaiding				Pineol		ofel
			Yerbrauch						Zahlentafel 12
	30	<u>)</u>					· !		i de la companya de l
<i>b</i> 2	20/14/24/25		Kerbnauch	KAX 5mg			10 mg		
2003	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)	Bezeichng	КАХ			<u>\$</u>		7,02
genzienregime	ИC	•	Verbraud	·					Kaine Flotation
1260	Munktic		Bezeichng						
Rea	gulato		Verbrauch						nge no
	und Re		Bezeichny						nlerme
	Regulatoren und Regulatoufunktion	ulator	Bezeiding Verbrauch Bezeiding Verbrauch Bezeiding. Verbraud, Bezeiding Kerbrauch Bezeich	200 mg	50mg	Fong	500 мд	5m0a/	Samo
		PH-Regulator		(ao	Cao	Cao	Cao	(a0	* bei dieser Sammlermenge noch
-9	2) 10)	10+0 10+0	ココ	70	C2	63	ZR	J. 7.	29 *

,)			Proa	lukte	d	25	Flota	tions ve	rsuches	5			
rions fe	Verfahrenst Bezeich	echnische nung		Tri	be			Wasser	Fe	eststoff		Probei	n- rierung
Flotations- stufe	Abkürzung	Art des Produktes	Masse [9]	Vdumen [ml]	Dichte [g/cm³]			Masse [g]	Masse [g]	Volumen [cm³]			Analyse Nr.
	V R1	Vorlauf											
R1	SR1	Schaum	60.3			21.9			(13.14)				37
$A \setminus I$	RRI	Rickst.											
R2	SR2	Schaum	199.6			24.7			(49.33)				38
<i>HL</i>	RR2												
51	551	Schaum	132.4			17.6			(23.33)		·		31
<i>الا</i>	RS1												
$C \cap$	552	Schaum	231.9			14.4			(33.41)				32
52	R52												
		Schaum	281.7			10.2			(28.80)				33
53	RS3	Rickst.				-			1100.95				

Probe des Vorlaufs: Feststoffgewicht 158.249 Feststoffinhalt des Rückwasserrestes ca. 19 (eingeklammerte Zahlenwerte sind berechnet)

1 82 L	Verfahre Bezeic	enstechn.	<u> </u>	,	Trübe		ionsvers	Wasser	F	eststoff		Probent	ummer
Flotations stufe	Ab-	Art	Masse				ffgehalt	(g)	Masse	Volumen	Dichte	Produkt	
Flot stů:	kürzung	Produk- tes	(ġ).	(ml)	(g/cm ³)	Masse %	Vol.		(g)	(cm ³)	(g/cm ³)	Nr.	Nr.
<i>C</i> 1 ·	SC1	Schoum	177,4			13,0			(23,05)				
C1	RC1	Rucksland											34
C 2	SC2	Schaum	134,5			11,5		- 1935-194 of Michigan Manager (1914) of Min	(15,53)		permitted the transfer of the second	alan 1966 (19 a selektrisisi (1964) (1 - Aphilles en generioaganea).	
<i>U L</i>	RC2	Ruckstond		ì									35
<i>C3</i>	563	Schoum	134,0			9,0			12,08				
63	203	Ruckstand											36
ZR	SZR	Schoum	247,9			15,0			(37,30)				
Z.K	RZR	Rucksland				The state of the s	Fritzenschaft in der ge		8793				
7/		Schoum				26,5			30,30		and the second s		20
ZC		Duckslond							700			1	8

b 0			· .		Anal	ysen de	r Flota	tionsprod	ukte				
kt- nung	Masse	%		Zus	ammense	tzung (Gehalte),%	· .	Dichte	(g/cm ³)	Disper	sität
rodu eich	stufen-	frisch- auf-	Analyse	nwerte %			Mineral	gehalte		ge- messen	ge- rechne	Korn- größen-	spez. Ober-
Produkt- bezeichnung	zogen	gabe bezogen	Cu	Pb	Zn					messen	recime	kenn- wert k (um)	fläche cm ² /ci
VR1		·	2,29*	2,05*	2,71* 181				·				
SR1			656	6,47	181								
RR1												enemente en deste e mai lant entenen apresentente es e	
SR2			6,85	5,28	217								
RR2								-	•				*
551			1320	4,05	330								
251													
552			9,06	6,13	436						10 g de antir principa de la recipira de dels de recipira de la recipira del recipira de la recipira de la recipira del recipira de la recipira del recipira de la recipira de la recipira del recipira de la recipira del		
RS 2											·		**************************************
<u> </u>			451	8,75	5,15								
<u> RS3</u>			1,16*	218*	373*								

Zahlentafel 15

* errechnet liber SFA

					Anal	ysen de	r Flotat	ionsprod	ukte			······································	
Produkt- bezeichnung	Masse	%		Zus	ammense	tzung((Gehalte)	, %		Dichte	(g/cm ³)	Disper	sität
rodu	stufen-	frisch- auf-	Analyse	nwerte %	,]	Mineralg	ehalte		ge- messen	ge- rechne	Korn- größen-	
рех	zogen	gabe bezogen	Си	Pb	Zn					medden	reemie	kenn- wert k (um)	fläche cm ² /cm ³
SC 1								S					
RC1			2,44	5,68	194								
									i sa-da-60 and against and a phononic group by a supposition of		and other controlled for the control of the control		
SC2													· · · · · · · · · · · · · · · · · · ·
RC2			7,60	6, 12	2,24						and market rape & and transplately order a major or publication and pr		
SC 3			32,00	1,79	1,15								
203			1930	4,52	2,07	·							
						· .							
SZR									*	e andre manuscription the other constitutions.			openina nga sanana na na kababa san
RZR			2,95*	5,48*	460*		<u> </u>						· · · · · · · · · · · · · · · · · · ·
676			20.40	- "	7-72								
SZC			20,80	7,16	5,73	•			· · · · · · · · · · · · · · · · · · ·				
RZC			088	6,79	2,91	·			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
	1	<u>!</u>			<u>_</u> <u>l</u>			1 1			101		

Zohlentafel 16

* errechnet über SFA

	0.114			CU		
Stufe	Produkt- bezeichnung	Masse %	Gehalt, % lt. Analyse	Einheiten gemäß Analysenwerte	. Einheiten abgeglichen	Verteilung %
	VR1	100.0000		195.5027	212,4473	100,00
	SR1	1,0521	6,56	6,9018	10,3066	21,90
her	RR1					78,10
6no	SR2	3,9497	6,85	27,0554	40,4030	85,84
R	RR2	94,9982		161,5455	161,7377	76,13
	(SR)			33,957	50,7096	23,87
	VC1	5,0018		50,6515	50,7096	23,87
	SC1	1,9517				20,36
	RC1	3,0501	2,44	7,4422	7, 4664	3,51
٠	SC2	1,3150				1,22
ane	RC 2	0,6367	7,60	4,8389	4,8546	2,29
Cle	SC3	1,0269	32,00	32,7328	32,7328	15,41
	RC3	0,2921	19,30	5,6375	5,6558	2,66
	RC			17,9186	17,9768	8,46
	VS 1	94, 9982		161,5455	161,7377	76,13
	SS1.	1,8679	13,20	24,656	24,7361	M,64.
·	RS1					64,48 -ss1
ger	SS2	2,6751	9,06	24,236	24,3148	11,45
veng	RS2					53, <i>0</i> 3
Scar	SS3	2,3059	4,51	10,400	10,4338	4,91
ی	RS3	88,1493	1,16	102,253	102,2530	48,13
	SS			59,292	59,4847	28,00
. f -	VZR	10,8278		77, 46.14	77, 4614	36,46
oduk	SZR	3,2256				
lenpr ition	RZR	7,6022	2,95	22,4265	22,4265	10,56
Zwischenprodukt. Flotation	SZC	2,6203	20,80	54,5022	54,5022	25,65
7	RZC	0,6053	0,88	0,5327	0,5327	0,25

Produkt	Verteilungs- %, Cu	Spezifischer Luftverbrauch (Teilsumme) cm³. cm²²
VR 1	100,00	0,00
RR1	78,10	24,09
RR2	76, 13	74, 09
RS1	64, 48	165,00
RS2	53,03	324,09
RS3	48, 13	683,18

Flotations ablauf in den Rougher- und Scavengerstufen

Produkt		Sieb-	Analyse-	Anschlift
Bezeichnung	Abkür- zung	fraktion (um)	Nr.	Nr.
		160/100	14	488
		100/75	1.5	489
Frischaufgabe	A	75/60	16	430
		60/40	17	491
		40/0	18	432
		160/100	2	493
Rückstand		100/75	3	494
Scavenger 3	RS3	75/60	4	495
		60/40	5 .	496
		40/0	6	497
Schaumprodukt Cleaner 3	SC3	240	22	498
Schaumprodukt Zwischen- produktcleaner	SZC	240	20	433

Verzeichnis der Körneranschliffe Anmerkung: Die Froktionen 40/0 Eine	Zahlentafel	19
den Feinstkornonteilen befreit		

Korn-	Analyse	Masse		Analyser	werte,	%	Mineralg	ehalte, %		Verteil	'ung,	%	
größe [µm]	Nr.	%	СИ	Pb	Zn	Fe	Pyrit	Gangart	Cu	РЬ	Zn	Pyrit	Gangart
160	13	0,51	_	_		_							
100	14	9,17	.1,09	1,58	1,27	32,1	66,80	26,33	4,60	7,46	4,54	9,47	13,62
75	15	15,62	1,50	1,99	1,67	32,8	67,51	23,35	10,21	15,15	9,64	15,46	19,50
60	16	13,54	1,58	1,82	1,94	37,3	77,02	13,40	9,33	12,02	9,70	15,28	9,70
40	17	9,01	2,06	2,20	2,09	34,9	70, 94	17,43	8,09	9,67	6,96	9,37	8,39
Ø	18	52,1 5	2,98	2,19	3,59	33,4	65,97	17,50	67,77	55,70	69,16	50,42	48,79
Σ		100,00	2,293	2,050	2,706	33,844	68,23	18,72	100,00	100,00	100,00	100,00	100,00

Siebfraktions analyse des Aufgabegutes A

Berechnung der Prit- und Gangartgehalte unter der Annahme folgender Erzkomponenten: Bleiglanz kupferkies, Zinkblende, Prit, Restkomponente (= Gangart) Rückgerechnete Analysenwerte des Aufgabegutes: 2,05 % Cu, 31,49 % Fe;

Korn-	Analyse	Masse	·	Analysen	werte; ?	2/6	Minerals	gehalte, %		Verteil	lung, %		
größe [µm]	Nr.	%	Cu	Pb	Zn	Fe	Pyrit	Gangart	Си	Pb	Zn	Pyrit	Gangart
160		0,75	_	_									
100	2	12,01	1,08	1,44	1,98	32,2	67,02	25,24	11,92	8,42	6,77	12,60	15,51
75	3	18,31	1,41	1,64	2,52	33,7	69,61	20,66	22,34	13,76	12,36	18,78	18,25
60	4	12,94	1,74	1,78	2,89	34,5	70,69	17,91	19,49	10,55	10,02	13,48	M,19
40	5	11,21	1,73	0,83	3,21	32,8	67,06	22,18	16,78	4,26	9,64	11,08	12,00
0	6	44,78	0,76	3,07	5,10	31,2	66,78	19,96	29,45	63,01	61,21	44,06	43,05
Σ		100,00	1,1554	2,182	3,731	32,39	67,87	20,70	100,00	100,00	100,00	100,00	100,00

Siebfraktions analyse des Produktes RS3 (= Rückstand Scavenger Nr. 3)

Berechnung der Pyrit- und Gangartgehalte unter der Annahme folgender Erzkomponenten:

Bleiglanz, Kupforkies, Zinkblende, Pyrit, Restkomponente (= "Gangart")

Korn- größe [µm]	Analyse Nr.	Masse	Analysenwerte, %			Mineralgehalt, %		Verteilung, %					
			Си	P6	Zn	Fe	Pyrit	Gangart	Си	Pb	Zn	Pyrit	Gangart
160	9	0,12	_				·						
71	10	3,70	2,29	3,88	3,49	32,6	65,56	18,11	2,97	2,71	2,90	3,85	4,90
40	11	6,90	2,66	4,12	3,34	31,6	62,70	20,03	6,22	5,19	5,02	6,74	9,79
ø	12	89,28	3,00	5,65	4,74	32,6	64,21	13,50	90,81	92,10	92,08	89,41	85,31
Σ		100,00	2,949	5,477	4,596	32,531	64,15	14,12	100,00	100,00	100,00	100,00	100,00

Siebfraktionsanalyse des Produktes RZR (Rückstand Zwischenprodukt Rougher

Produkt	Kupferkies	Bleiglanz	Zinkblende	Pyrit	Gangart	Summe
Aufgobe	6,65	2,37	4,03	68,23	18,72	100,00
RZR .	8,56	6,32	6,85	64,15	14.12	100,00
25	3,35	2,52	5,56	67, 29	21,28	100,00
RZC	2,55	7,84	4,33	53,60	32,68	10000
SZC	60,36	8,27	P,53	20,16	268	100,00
SC3	92,86	2,07	171	5,32	-1,96 *	100,00

Zusammenstellung Produkte	der	berechneten	Mineralgehalle	der	Zohlentafel 23
,					

Korn- größe [µm]	Masse	Ve.	rteilung	s % F(a	aus Torbeli	le Nr)	$\frac{\kappa_2}{\kappa_1}$	A log K=	F/Alog K				
		Си	Pb	Zn	Pyrit	Gangart		$= \log \frac{\kappa_2}{\kappa_A}$	Си	Pb	Zn	Pyrit	Gangart
160	0,51	_			-	-							
100	9,17	4,60	7,46	4,54	9,47	13,62	1,60	0,204	22,55	36,57	22,25	46,42	66,76
75	15,62	10,21	15,15	9,64	15,46	19,50	1,333	0,125	21,68	121,20	77,12	123,68	156,00
60	13,54	9, 33	12,02	9,70	15,28	9,70	1,25	0,094	96,19	123,92	100,00	157, 53	100,00
40	9,01	8,09	9,67	9,96	9,37	₹,39	1,50	0,176	45,97	54,94	56,59	53,24	47,67
1,8*	52,15	67,77	55,70	69,16	50,42	48,79	22,22	1,35	50,20	41,26	51,23	37,35	36,14
Σ	100,00	100,00	100,00	100,00	100,00	100,00							-

^{*} berechnete untere Grenzkorngroße

Berechnung der Verteilungsspektren in Abhängigkeit von der Korngröße für die Frischaufgabe A (= Vorlauf Flotation)

korn- größe	Masse		Verteilu	ng, F%	(aus Tabe	:lle Nr)	K ₂	K_2 $\Delta \log k = F/\Delta \log k$					
[jum]	%	Си	Pb	Zn	Pyrit	Gangart	K ₁	log K2	Си.	Pb	Zn	Pyrit	Gangart 76,03 146,00 M5,36 68,18 34,72
160	0,75	·		. —									
100	12,01	11,92	8,42	6,77	12,60	15,51	1,6	0,204	58,43	41,27	33,19	61,76	76,03
75	18,31	22,34	13,76	12,36	18,78	18,25	1,333	0,125	178,72	110,08	98,88	150,24	146,00
60	12,94	19,49	10,55	10,02	13,48	11,19	1,25	0,097	200,93	108,76	103,30	138,97	115,36
40	M, 21	16,78	4,26	9,64	11,08	12,00	1,50	0,176	95,34	24,20	54,77	62,95	68,18
2,3*	44,78	29,45	63,01	61,21	44,06	43,05	17,39	1,24	23,75	50,81	49,36	<i>35,5</i> 3	34,72
Σ	100,00	100,00	100,00	100,00	100,00	100,00	-						

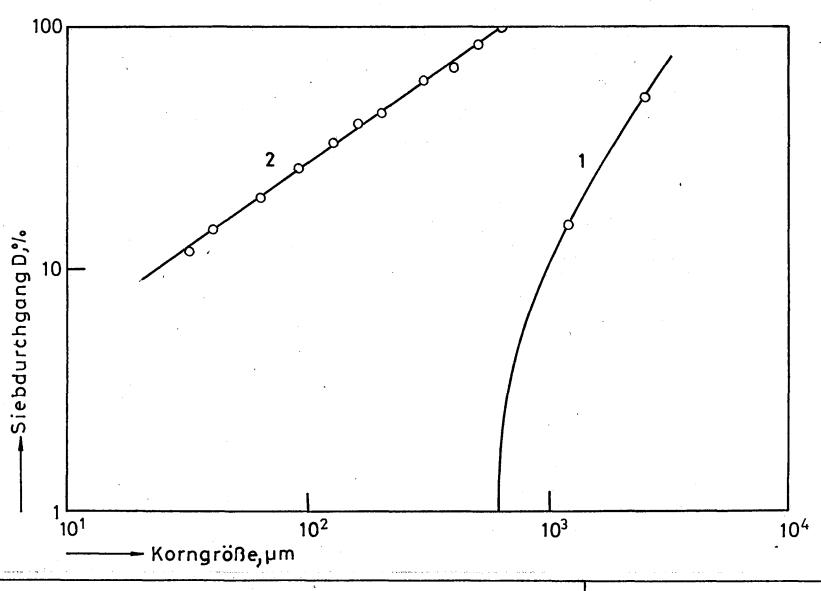
^{*} berechnete untere Grenzkorngröße

Berechnung der Verteilungsspektren in Abhängigkeit von der Korngröße für das Produkt R53 (= Rückstand Scavenger 3)

Zahlentafel 25

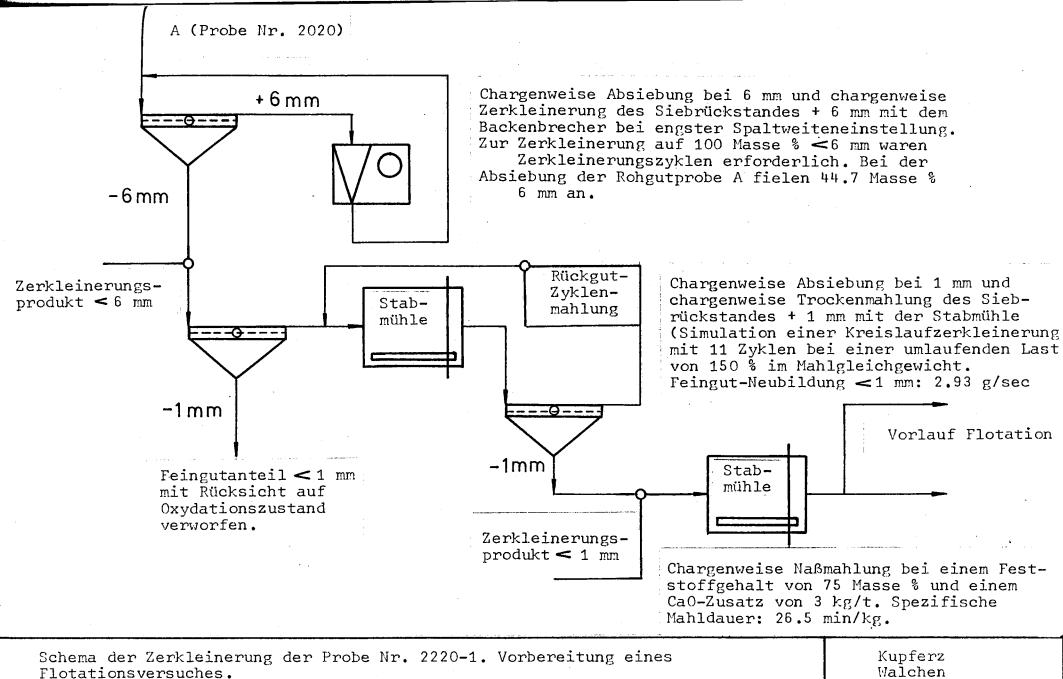
Korn-	Aufgabe						
größe [µm]	Cu	Pb	<i>Zn</i>	Pyrit	Gangart		
100	9338	0,548	0,333	0,695	. 1		
75	0,524	0,777	0,494	0,793	1		
60	0,692	1,239	1,000	1,545	1		
40	0,964	1,153	1,187	1,117	1		
\$ (4,8)*	1,389	1,142	1,418	1,033	1		

Korn-	Rüc	kstand	Scavenge	- 3	
gro'Be	Cu	Pb	Zn	Pyrit	Gangart
100	0,769	0,543	0,437	0,812	1
75	1,224	0,754	0,677	1,029	1
: 60	1,742	0,943	0,895	1,205	1
40	1,398	0,355	0,803	0,923	1
\$ (2,3)*	0, 6.84	1,463	1,422	1,023	1


^{*} berechnete untere Grenzkorngröße

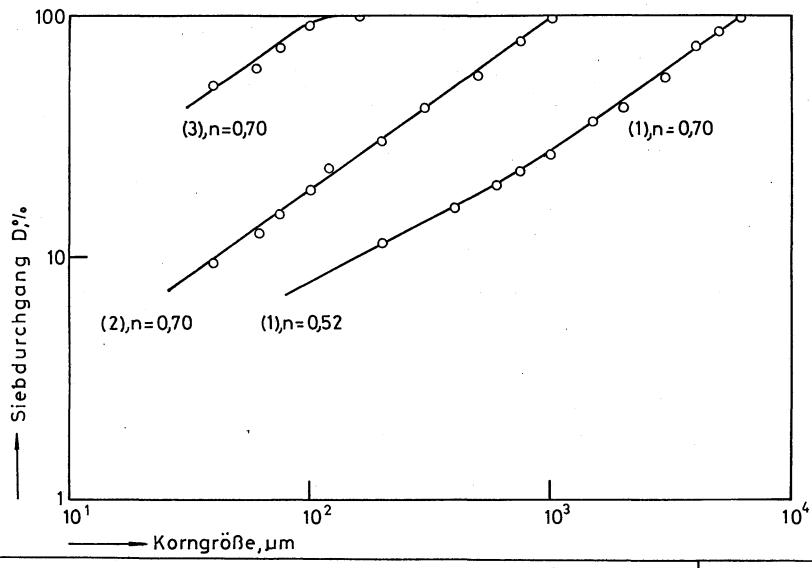
Verhältniswerte der Korngrößen- häufigkeiten F/A logh der einzelnen Mineralphasen. Bezugsgrößen (= 10) die Korngrößenhaufigkeiten der Gangart.	Zahlentafel 26
--	----------------

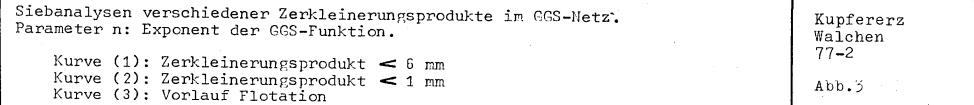
Mineralphase	Produkt bzw. Ko werte k ₈₀ (um)		Produkt bzw. Verhältnis (%) der Korngrößenkennwerte k ₈₀		
	Aufgabe	Rückstand Scavenger 3	Aufgabe	Rückstand Scavenger 3	
Kupferkies	70	. 20	76,1	97 , 88	
Zinkblende	65	75	70,7	81,5	
Bleiglanz	80	80	37,0	87,0	
Pyrit	85	92	89,1	100,0	
Cangart	92	95	100,0	101,0	

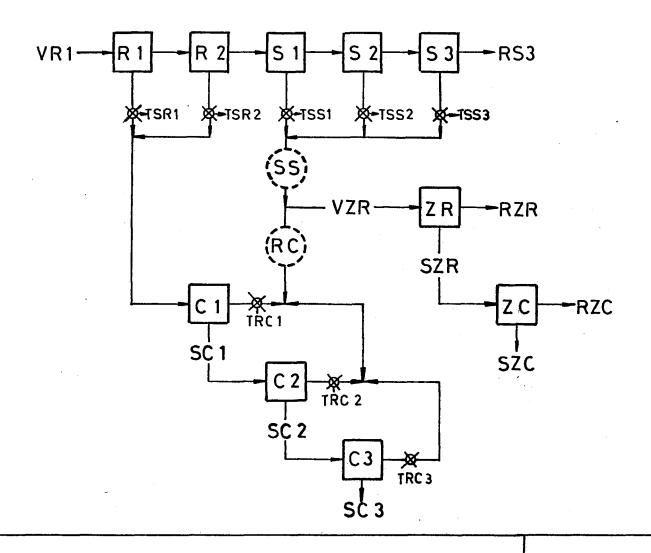

Korngrößenkennwerte k₈₀ (um) sowie Verhältniswerte der Korngrößenkennwerte k₈₀ (Bezugsgröße: k₈₀ - Vert der Cangart im Aufgabegut) für die einzelnen Roherzkomponenter

Mahlentafel 27

Siebanalyse des Aufgabegutes der Zyklenmahlung < 0,63 mm (1) Siebanalyse des Zerkleinerungsproduktes < 0,63 mm der Zyklenmahlung (2) Probe Nr.2201

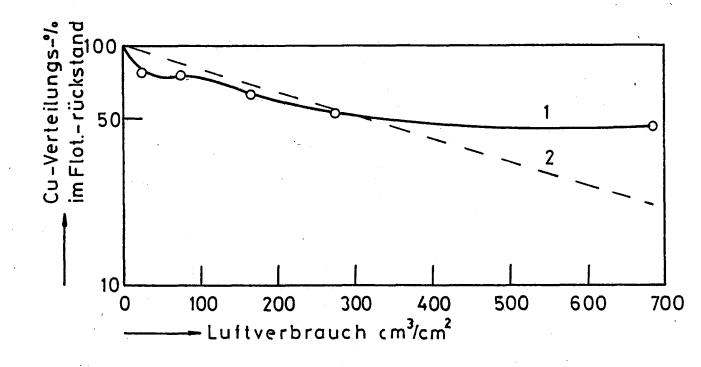

Kupfererz Walchen 77-2 Abb.1




Stabmühle 150 ∅ x 300 mm. Mahlkörper: 8 Stäbe mit einem Cesamtgewicht von 8.465 kg. Drehzahl der Mühle: 66.6 UpM. Nettoleistungsaufnahme: ca. 28 W (Erfahrungswert).

.77 - 2

Abb.2



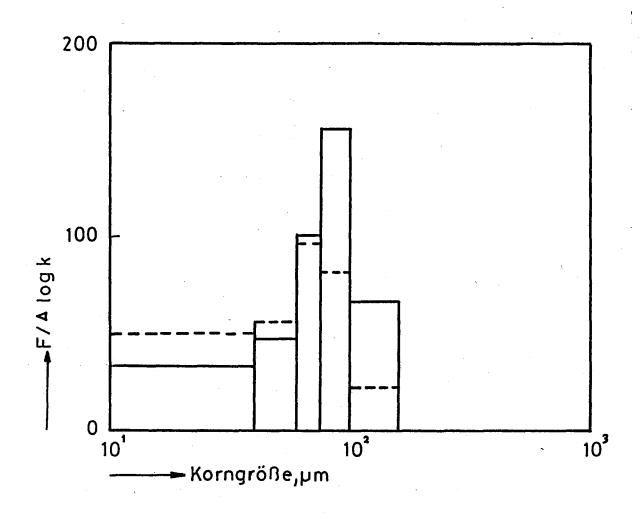
Schema des Flotationsversuches

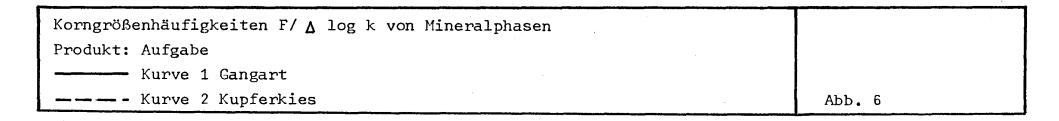
Kupfererz Walchen 77-2 Abb.4

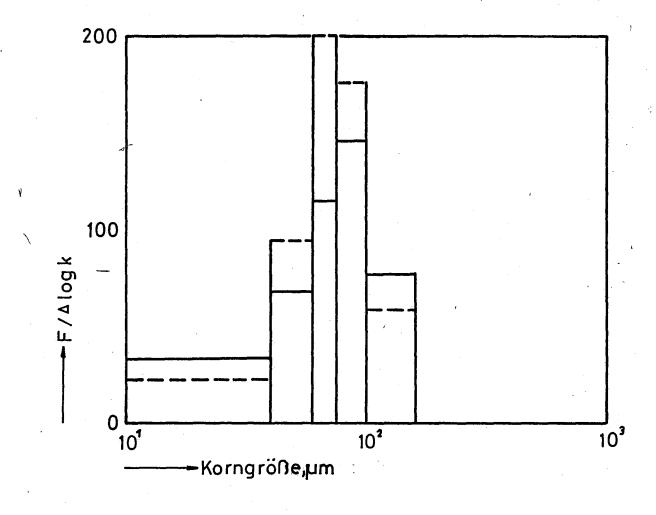
Flotationskinetik in den

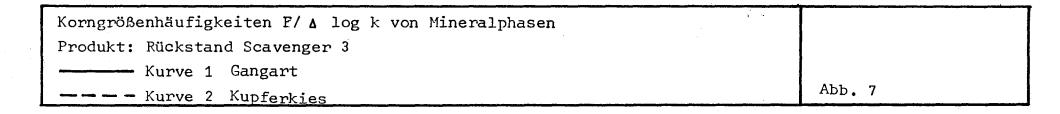
Rougher- und Scavengerstufen

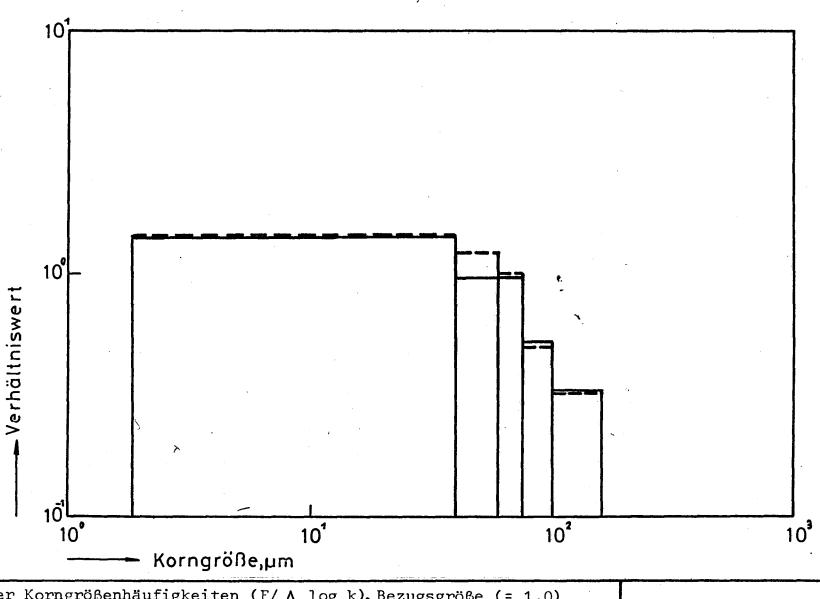
Kurve 1: Gesamter Cu-Inhalt

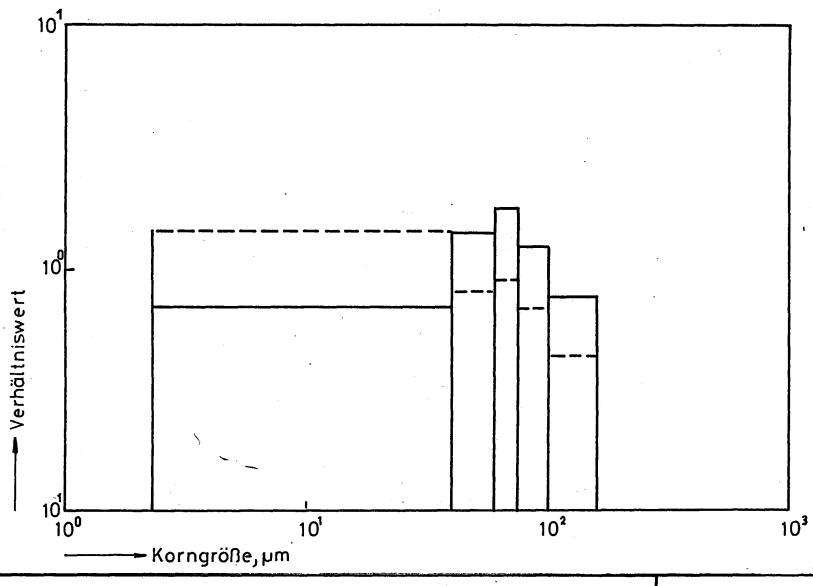

Kurve 2: Cu-Inhalt der Korn
fraktion <40 µm

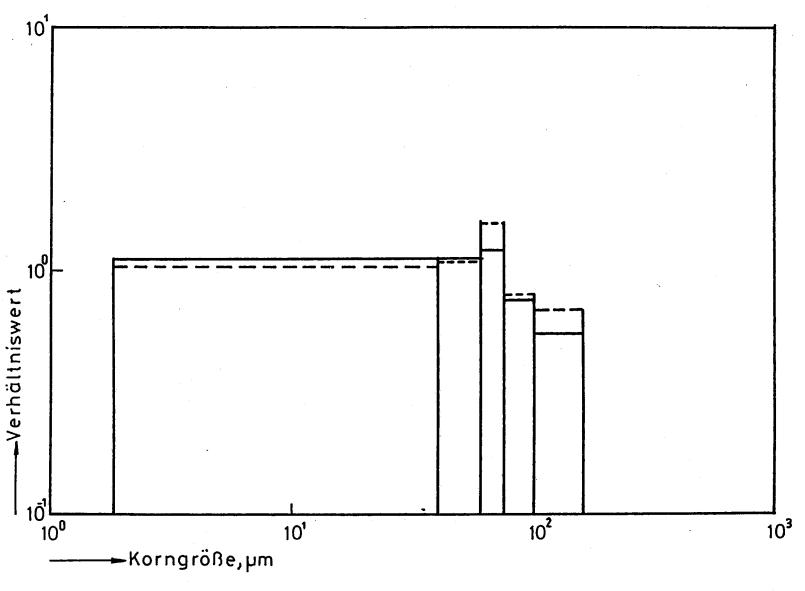

Kupfererz

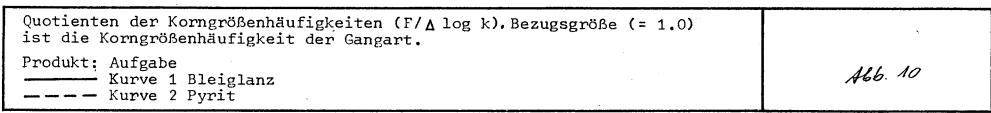

Walchen

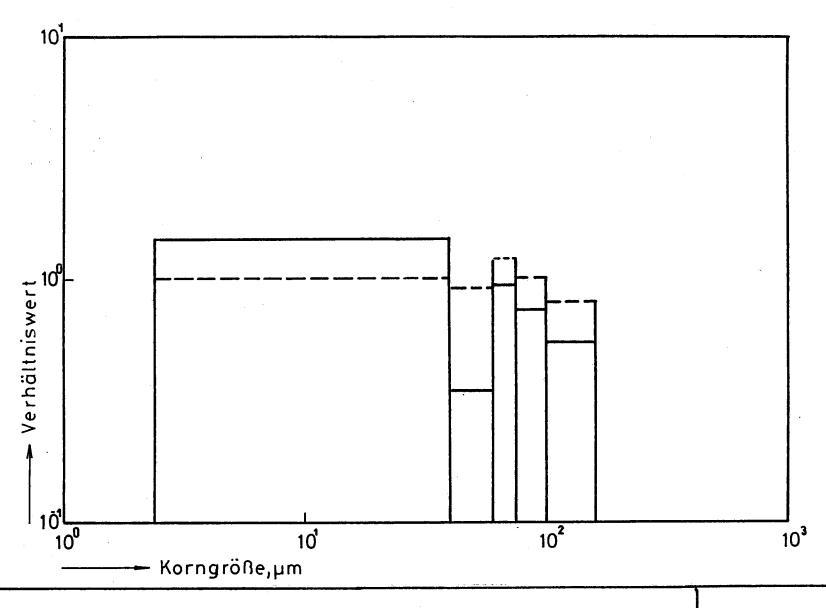

77-2


Abb.5






Quotienten der Korngrößenhäufigkeiten (F/∆ log k) Bezugsgröße (= 1.0) ist die Korngrößenhäufigkeit der Gangart.


Produkt: Rückstand Scavenger 3

Kurve 1 Kupferkies
Kurve 2 Zinkblende

Аьь. 9

Quotienten der Korngrößenhäufigkeiten (F/ Δ log k) Bezugsgröße (= 1.0) ist die Korngrößenhäufigkeit der Gangart.

Produkt: Rückstand Scavenger 3

Kurve 1 Bleiglanz

Kurve 2 Pyrit

A66.11

Verfahrensstufe.	Produkte	Masse (g)
Rougher 1	TSR1	0,70
Rougher 2	TSR2	2 , 70
Scavenger 1	TSS1	1 , 25
Scavenger 2	TSS2	1,86
Scavenger 3	TSS3	1,61
	RS3	1100,95
Cleaner 1	TRC1	1,93
Cleaner 2	TRC2	0,41
Cleaner 3	TRC3	0,20
	SC3	12,08
ZP-Rougher	RZR	87 , 93
ZP-Cleaner	RZC	7,00
	SZC	30,30
		1248,92

	Trüb	Feststoff	
	Masse 8	Feststoff- gehalt, Masse	(g)
Einwaage in die Mahlung			2696,00
Teilprobe A	237 , 5	66,63	158 , 24
Vorlauf Flotation	1906,0	66,63	1270,00
Aufbewahrte Rest-Trübeprobe	1908 , 5	66,63	1271,63
Mahlprodukt nach Einstellung auf einen Feststoffgehalt von 66,6 Masse%	4052 , 0	66 , 63	2699 , 87

Blatt 1

Rückstand Zwischenprodukt(ZP) - Flotation

RZR Rückstand ZP - Rougher		87,93	g
RZC Rückstand ZP - Cleaner		7,00	
RZ Rückstand ZP - Flotation		94,93	g
Ermittlung von (RS +	RZ) über die direkte W	ägung	
RS Rückstand Scavengerflotat	ion	1100,95	g
RZ Rückstand ZP - Flotation		94,93	g
(RS + RZ) (RS + P3		1195 , 88	g }
Ausgleich von Widersp	rüchen		
1) Vorläufige Verechnung von V	C1 über die Teilproben	TSR	
	$18,4 \times 0,70 =$		_
SR2	17,9 x 2,70 =	48,28 	g
SR Schaumprodukt Rougher von Teiprobenentnahme	3,40	61,14	g
VC1 Vorlauf Cleaner 1 = Schaumprodukt Rougher			
nach Teilprobenentnahme	,	57,74	
2) Vorläufige Berechnung von RC Formblatt "Teilprobenentnahm		RC (sieh	.e
RC1 Rückstand Cleaner 1	$18,5 \times 1,93 =$	35,71	g
RC2.	18,2 x 00,41 ==	•	-
RC3	18,6 x 0,20 =	3,42 	g -
RC Rückstand Cleaner vor			
Teilprobenentnahme		46,59	g
RC nach Teilprobenentnahme (in die ZP - Flotation)	46,59-(1,93+0,41+0,20)=44.05	g
	. , , . ,	•	-

3)	Vorläufige	Berechnung	von	SS	über	die	Teilproben	TSS

SS1 Schaum Scavenger 1 SS2 SS3	18,5 x 1,25 g 17,8 x 1,86 g 17,7 x 1,61 g	23,13 g 33,13 g 28,56 g
SS vor Teilprobenentnahme SS nach Teilprobenentnahme	4,72	84,82 g
(in die ZP - Flotation)	•	80,10 g

4) Vorläufige Berechnung des Vorlaufes der ZP - Flotation als Summe der vorläufigen Werte für RC un SS nach der Teilprobenentnahme

RC nach Teilprobenentnahme	44 , 05 g
SS nach Teilprobenentnahme	80,10 g
$^{ m VZ}$ (vorläufig)	124,15 g

5) Berechnung des tatsächlichen Vorlaufes der ZP - Flotation als Summe der Endprodukte der ZP - Flotation

SZ	Schaum ZP - Flotation	30,30	g
RZ	Rückstand ZP - Flotation	94,93	g
(SZ	+ RZ) = VZ _{endgültig}	125,23	g

6) Korrekturfaktor für die Berechnung der endgültigen Werte von RC und SS (Verbesserung der vorläufigen Werte)

$$= \frac{125,23}{124,15} = 1,009$$

7) Berechnung der endgültigen Werte von RC und SS mit dem Korrekturfaktor aus 6)

(endgültiger Wert von RC k. (vorläufiger Wert von RC nach Teilprobenentnahme)

 $(endgültiger\ Wert\ von\ RC) = (TRC) + (endgültiger\ Wert\ von\ RC)$ $vor\ Teilprobenentnahme)$

RC (endgültig, nach Teilprobenentnahme) = 1,009 x 44,05 = 44,45

RC (endgültig, vor Teilprobenentnahme) = 44,45 + 2,54 = 46,99

Tatsächliches mittleres Verjüngungsverhältnis bei der Teilprobenentnahme: 46,99/2,54 = 18,5

SS $(endgültig nach = 1,009 \times 80,10 = 80,82)$

SS^{(endgültig vor} = 80,82 + 4,72 = 85,54

Tatsächliches mittleres Verjüngungsverhältnis bei der Teilprobeentnahme: 85,54/4,72 = 18,1

8) Berechnung des endgültigen Wertes von VC1, d.h. des Schaumproduktes Rougher nach der Teilprobenentnahme

Schaumproduktes Rougher nach der Teilprobenentnahm RC vor Teilprobenentnahme

(endgültiger Wert)46,99SC (nach Wägung)12,08

VC1 endgültig 59,07

9) Berechnung des endgültigen Wertes von SR (d.h. des Rougher-Schaumproduktes vor der Teilprobenentnahme) als Summe der (gewogenen) Teilprobe TSR und des endgültigen Wertes von VC1

Tatsächliches Verjüngungsverhältnis bei der Teilprobenentnahme in den Rougherstufen 62.47/3.40 Vergleich mit dem vorläufigen Wert von SR (siehe Pkt 1)

SR	Endgültiger	Wert	62.47	g
SR	Vorläufiger	Wert	61.14	g

Korrekturfaktor k_R zur Verbesserung der vorläufigen (d.h. aus den Teilproben ermittelte) Werte für die Schaumprodukte der Rougherstufen (SR1 und SR2)

$$k_R = \frac{62.47}{61.14} = 1.022$$

Korrekturfaktor k_c zur Verbesserung der vorläufigen (d.h. auf Grund der Teilproben TRC ermittelten) Werte für die einzelnen Rückstände der Cleanerstufen (RC_i)

$$k_c = \frac{46.99 \text{ g}}{46.59 \text{ g}} = 1.009$$

Korrekturfaktor k_S zur Verbesserung der vorläufigen (d.h. auf Grund der Teilproben TSS ermittelten) Werte für die Schaumprodukte SS_i der einzelnen Scavengerstufen

$$k_s = \frac{85.54}{84.82} = 1.008$$

Berechnung der endgültigen Werte für die Schaumprodukte in den Rougher- und Scavengerstufen bzw. die Rückstände in den Cleanerstufen

Flot. Stufe	Produkt	Vorläufiger Wert g	Korrektur- faktor	Endgültiger Wert g
R 1	SR1	12.86		13.14
R2	SR2	48.28		49.33
R	∑ SR	61.14	1.022	62.47
S1	SS1	23.13		23.33
S 2	SS2	33.13		33.41
S 3	SS3	28.56		28.80
S	Z SS	84.82	1.008	85.54
C1	RC1	35.71		36.02
C2	RC2	7.46		7.52
C3	RC3	3.42		3.45
С	≥ RC	46.59	1.009	46.99

Zusammenstellung der endgültigen Werte und Berechnung der noch ausständigen

Rougher	• •	g	stufen- bezogen %	vorlauf- bezogen %
1)	SR1	13.14	1.0521	
2)	SR2	49.33	3.9497	
17)	RR2 = VS1	1186.49	99.9982	
18)	VR1	1248.96	100.0000	
14)	∑ TSR	3.40		

Kontrollen:

a)
$$(1) + (2) - (14) = (21)$$

b)
$$(7) + (8) + (9) - (15) + (3) + (4) + (5) - (16a) = VZ$$

S	C	a	VE	en	g	e	r

Scave	nger				
			g		%
				stufen-	vorlauf-
				bezogen	bezogen
3)	SS1		23.33	1.9663	1.8679
4)	SS2		33.41	2.8159	2.6751
5)	SS3		28.80	2.4273	2.3059
6)	RS3		1100.95	92.7905	88.1493
16)	VS1	= RR2	1186.49	100.0000	94.9982
16a)	Z TSS		4.72		
	SS				6.8489
Clean	er		·		
21)	VC1		59.07	100.00	5.0018
7)	.RC1		36.02	60.98	3.0501
20)	SC1	= VC2	23.05	39.02	1.9517
8)	RC2		7.52	12.73	0.6367
19)	SC2	= VC3	15.53	26.29	1.3150
9)	RC3		3.45	5.84	0.2921
10)	SC3		12.08	20.45	1.0229
15)	∑ TRC		2.54		
	RC				3.9789
ZP-F1	otation				
23)	VZR	= VZ	125.23	100.00	10.8278
11)	RZR		87.93	70.21	7.6022
22)	SZR	= VZC	37.30	29.79	3.2256
12)	RZC		7.00	5.59	0.6053
13)	SZC	= SC	30.30	24.20	2.6203